Published online by Cambridge University Press: 31 January 2020
Let $K$ be a compact Lie group with complexification
$G$, and let
$V$ be a unitary
$K$-module. We consider the real symplectic quotient
$M_{0}$ at level zero of the homogeneous quadratic moment map as well as the complex symplectic quotient, defined here as the complexification of
$M_{0}$. We show that if
$(V,G)$ is
$3$-large, a condition that holds generically, then the complex symplectic quotient has symplectic singularities and is graded Gorenstein. This implies in particular that the real symplectic quotient is graded Gorenstein. In case
$K$ is a torus or
$\operatorname{SU}_{2}$, we show that these results hold without the hypothesis that
$(V,G)$ is
$3$-large.
C.S. was supported by the E.C. Ellett Professorship in Mathematics.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.